Statistical Learning for Data Mining
Download as PDF
Overview
Subject area
STA
Catalog Number
9890
Course Title
Statistical Learning for Data Mining
Department(s)
Description
This course applies multiple regression techniques to the increasingly important study of very large data sets. Those techniques include linear and logistic model fitting, inference, and diagnostics. Methods with special applicability for Big Data will be emphasized, such as lasso and ridge regression. Issues of model complexity, the bias-variance tradeoff, and model validation will be studied in the context of large data sets. Methods that rely less on distributional assumptions are also introduced, including cross-validation, bootstrap resampling, and nonparametric methods. Students will learn dimension reduction methods, correlation analysis, and random forests.
Typically Offered
Fall, Spring, Summer
Academic Career
Graduate
Liberal Arts
No
Credits
Minimum Units
3
Maximum Units
3
Academic Progress Units
3
Repeat For Credit
No
Components
Name
Lecture
Hours
3
Requisites
029813